Effect of enzymatic orientation through the use of syringaldazine molecules on multiple multi-copper oxidase enzymes.

نویسندگان

  • Yevgenia Ulyanova
  • Sofia Babanova
  • Erica Pinchon
  • Ivana Matanovic
  • Sameer Singhal
  • Plamen Atanassov
چکیده

The effect of proper enzyme orientation at the electrode surface was explored for two multi-copper oxygen reducing enzymes: Bilirubin Oxidase (BOx) and Laccase (Lac). Simultaneous utilization of "tethering" agent (1-pyrenebutanoic acid, succinimidyl ester; PBSE), for stable enzyme immobilization, and syringaldazine (Syr), for enzyme orientation, of both Lac and BOx led to a notable enhancement of the electrode performance. For Lac cathodes tested in solution it was established that PBSE-Lac and PBSE-Syr-Lac modified cathodes demonstrated approximately 6 and 9 times increase in current density, respectively, compared to physically adsorbed and randomly oriented Lac cathodes. Further testing in solution utilizing BOx showed an even higher increase in achievable current densities, thus BOx was chosen for additional testing in air-breathing mode. In subsequent air-breathing experiments the incorporation of PBSE and Syr with BOx resulted in current densities of 0.65 ± 0.1 mA cm(-2); 2.5 times higher when compared to an unmodified BOx cathode. A fully tethered/oriented BOx cathode was combined with a NAD-dependent Glucose Dehydrogenase anode for the fabrication of a complete enzymatic membraneless fuel cell. A maximum power of 1.03 ± 0.06 mW cm(-2) was recorded for the complete fuel cell. The observed significant enhancement in the performance of "oriented" cathodes was a result of proper enzyme orientation, leading to facilitated enzyme/electrode interface interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of Glucose/O2 Enzymatic Biofuel Cell

Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...

متن کامل

Multiple Multi-Copper Oxidase Gene Families in Basidiomycetes – What for?

Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distrib...

متن کامل

An evaluation of some oxidative and enzymatic biomarkers in different stages of naturally occurring copper poisoning in sheep

BACKGROUND: The early stage of Copper poisoning is difficult to be clinically diagnosed in sheep and has not been documented clearly yet. OBJECTIVES: To assess biomarkers in predicting early Copper poisoning in sheep, blood samples were collected from several groups of animals from a naturally Copper poisoning occurrence in an industrial region. METHODS: Animals were divided into four experimen...

متن کامل

Trametes versicolor laccase: random mutagenesis and heterologous expression in Pichia pastoris

Laccase is a blue multi-copper oxidase. It has a broad biotechnical potential which increases the interest to study the enzyme further. A laccase-encoding gene from the white-rot fungus Trametes versicolor (lcc2) was mutated using two different methods for random mutagenesis: error-prone PCR and a method based on an E. coli strain (ES1301 mutS) that introduces random mutations. For the error-pr...

متن کامل

Inhibition of chickpea seedling copper amine oxidases by tetraethylenepentamine

Copper amine oxidases are important enzymes, which contribute to the regulation of mono- and polyamine levels. Each monomer contains one Cu(II) ion and 2,4,5-trihydroxyphenylalanine (TPQ) as cofactors. They catalyze the oxidative deamination of primary amines to aldehydes with a ping-pong mechanism consisting of a transamination. The mechanism is followed by the transfer of two electrons to mol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 26  شماره 

صفحات  -

تاریخ انتشار 2014